Inspired by Paul Groves

- 1. Int<u>RA</u>molecular = forces holding atoms together...the "bonds"
 - Broken during chemical reactions
- 2. Int<u>ER</u>molecular = forces holding molecules near other molecules
 - Broken during phase changes, pulling molecules away from each other but not pulling the bonded atoms apart! We do not break int<u>RA</u>molecular bonds during a phase change.
- 3. We will be classifying substances into:
 - Covalent (molecular)
 - London dispersion forces
 - o Dipole-Dipole
 - Hydrogen bond
 - Bulk Solids
 - o Metallic
 - "sea of electrons," "free flowing electrons," "mobile carriers" etc
 - Electrons detached and flow freely throughout the material
 - \circ lonic
 - Network covalent
 - Covalent bonded substance that has so many intER and intRa bonds that it is much stronger than expected
 - Common network covalents:
 - Carbon as Diamond and Carbon as Graphite
 - WC, SiC
 - Si, SiO₂, SiO₄
 - (any others you come across!)
 - Some new to you IMFs:
 - o Ion-Dipole
 - Interaction between an ion and a polar molecule
 - o Ion Induced Dipole
 - When an ion causes a dipole to form in a non-polar molecule
 - Dipole Induced Dipole
 - When a polar molecule causes a dipole to form in a non-polar molecule

A BLUFFER'S GUIDE

- **4.** To determine what type of IMF is present
 - Determine if it is ionic, covalent or metallic
 - If covalent determine if it is:
 - Non-polar = London Forces
 - Temporary dipole due to the unequal distribution of electrons.
 - Everything has London Forces!
 - Weak compared to other forces BUT if you have enough cumulative forces it can result in higher properties than expected.
 - Increases with increased
 "polarizability of electron cloud" and surface area.
 - Polar = Dipole-Dipole
 - Permanent polarity due to the structure of the molecule
 - Increases with increased difference in electro negativities between atoms.
 - Bond dipoles do not cancel out, resulting in a "net dipole" for the molecule
 - Polar AND "H-NOF:" = H-bonding
 - Stronger than a typical dipoledipole interaction.
 - Must meet the criteria of a hydrogen bonded to a highly electronegative element (N, O, or F) with a lone pair.
 - Important examples: DNA, protein folding, water
- 5. As the amount of IMFs increases
 - Properties increase
 - Boiling point increases
 - Melting point increases
 - Viscosity increases
 - Surface tension increases
 - Deviates more from "ideal" behavior
- 6. Miscibility is based on IMFs
 - Polar things mix with polar things
 - Nonpolar things mix with nonpolar things

- 7. Vapor Pressure
 - Vapor pressure is based on the dynamic between the liquid and the vapor above the liquid's surface, when measured in a closed container.

- Temperature is the only variable that changes the vapor pressure, not the quantity of liquid, the pressure above the liquid, or the volume of the container. Vapor-Liquid dynamics are an equilibrium situation. Example:
 - If you increase the volume of the container, the pressure inside will decrease.
 - When the pressure decreases, there are fewer vapor molecules per volume so the rate of condensation will slow down.
 - So for a period of time the rate of vaporization will be higher than the rate of condensation.
 - This will increase the amount of vapor in the container.
 - Eventually enough vapor is made so the rate of vaporization and rate of condensation are equal again.
 - Equilibrium is restablished!
 - Vapor pressure is now back to what it was before! Changing the container volume did not affect the vapor pressure value.
- The lower the IMFs, the higher the vapor pressure above the liquid will be. The liquid is more "volatile"
 - The molecules are not being held into the liquid phase as much. More are in the vapor phase
- The higher the IMFs, the lower the vapor pressure above the liquid will be. The liquid is less "volatile"
 - The molecules are being held in the liquid phase! Less are in the vapor phase.

- Boiling occurs when the vapor pressure matches the pressure above the container.
 - You can make things boil by either heating the temperature so the vapor pressure increases, OR by lowering the pressure above the liquid so that it matches the vapor pressure.
 - "Normal Boiling Point" is the temperature at which a liquid will boil when at sea level, 1atm.

- $s \leftrightarrow l = melting$, freezing
- $I \leftrightarrow g = vaporizing$, condensing
- During heating/cooling, there is a change to the kinetic energy (temperature is changing)
- During phase changes, there is a change to the potential energy (particles are changing position, closer or further apart, NO temperature change!)
- To calculate energy change involved:
 - During a heating/cooling segment $\Delta H = mC\Delta T$
 - $\circ \quad \mbox{During a phase change} \\ \Delta H_{fus} = m L_{fus}$
 - $\Delta H_{vap} = mL_{vap}$

Properties Indicate Strength of Intermolecular Forces (IMF's)

IMF	BP	FP	H_{vap}	H_{fus}	VP
IMF	BP	FP	$\mathbf{H}_{\mathrm{vap}}$	H _{fus}	VP

8. Phase Changes